
A Vertex at the End of the Rainbow

Some Results on Rainbow Connection Numbers in Graphs

By Daniel Vaughn

Under the direction of
Dr. John Caughman
With second reader

Dr. Bin Jiang

In partial fulfillment of the requirement for the degree of
Masters of Science in Mathematics

Portland State University
Fariborz Maseeh Department of Mathematics and Statistics

December 08, 2014



Table of Contents

1. Introduction

1.1 The Complete Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Wheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Bipartite Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Multipartite Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Rainbow Colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Elementary Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The Petersen Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Extreme Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Cycles and Wheels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Connection Numbers on Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Rainbow Connection Numbers of the Wheels . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Strong Rainbow Connection Numbers of the Wheels . . . . . . . . . . . . . . . . . 11

4. Complete Multipartite Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Strong Rainbow Connection in Complete Multipartite Graphs . . . . . . . . 13

4.2 Rainbow Connection in Complete Multipartite Graphs . . . . . . . . . . . . . . . 17

4.3 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



Introduction

In this paper, we present results found in the 2008 article “Rainbow Connection Numbers in
Graphs” by Gary Chartrand, Garry L. Johns, Kathleen A. McKeon and Ping Zhang [1].

Specifically we follow their presentation of results concerning the rainbow connection num-
bers and strong rainbow connection numbers of several families of graphs. We begin with the
necessary definitions.

We define a graph G to be a set of vertices V (G) = {v1, v2, ...., vn} together with a set
of edges E(G) = {e1, e2, ...., em}. A finite graph has finite vertex and edge sets. A simple
graph contains no multiple edges or loops, so that any edge in a simple graph adjoins exactly
two distinct vertices vi, vj ∈ V (G). Thus if G is a simple graph and e ∈ E(G), we can write
e = vivj for some vi, vj ∈ V (G). In this case, we say vi and vj are adjacent. We say that G is
undirected provided vivj ∈ E(G) if and only if vjvi ∈ E(G), for any distinct vi, vj ∈ V (G). A
path between vertices u and v in a graph G (also called a u-v path) consists of a sequence of
vertices v1, v2, ..., vn with v1 = u, vn = v and vivi+1 ∈ E(G) for 1 ≤ i ≤ n− 1. Finally, a graph
G is connected if, for any vertices u, v ∈ V (G), there exists a u− v path in G. In this paper,
we work only with finite, simple, undirected, connected graphs. We look now at some common
families of graphs which we will refer to frequently.

1.1 The Complete Graphs

In a complete graph, each pair of vertices in V (G) are adjacent. The complete graphs are
denoted by Kn where n = |V (G)|.

1.2 The Cycles

A cycle is a sequence of vertices v1, v2, ..., vk where the vertices are distinct and vi is adjacent
to vj if and only if |i− j| ≡ 1 (mod k). A cycle on k vertices is referred to as Ck.



1.3 The Wheels

A wheel can be formed as follows: Start with the cycle Ck. Take a new vertex v and cre-
ate an edge between v and each vertex in Ck. The new graph is the wheel Wk.

1.4 Bipartite Graphs

A set of pairwise nonadjacent vertices is called an independent set. Suppose the ver-
tices of graph G can be partitioned into exactly two independent sets A and B. Then each
vertex in A is adjacent only to vertices in B and vice-versa. In this case we call G bipartite.
Moreover if each vertex in A is adjacent to each vertex in B we say that G is a complete bipar-
tite graph, denoted by Ks,t where |A| = s and |B| = t. It is convenient to display independent
sets framed separately, as below.



• 1.5 Multipartite Graphs

A graph is called multipartite if it can be partitioned into more than one independent
set. A k-partite graph can, in particular, be partitioned into k independent sets. A complete
k -partite graph can be partitioned into k independent sets S1, S2, ..., Sk such that each vertex
in Si is adjacent to every vertex in G except those in Si, for 1 ≤ i ≤ k. In this case the graph
could be denoted by Kn1,n2,...,nk

, where ni = |Si| for each i.

2. Rainbow Colorings

Let G be a graph. A coloring c : E → {1, 2, ..., k}, k ∈ N, is a function which assigns to
each edge in G exactly one color i such that 1 ≤ i ≤ k. Incident edges (edges which share an
endpoint) are allowed to carry the same color in the general case. The so-called “house” graphs
below demonstrate two possible colorings on the same graph.



Given a coloring of a graph G, a path P is a rainbow path if no two edges of P are colored
the same. So in the coloring of graph G1, for example, v2v3v4 is a rainbow path but v2v5v4 is
not. A colored graph G is rainbow connected if G contains a rainbow u − v path for every
two vertices u and v of G. In this case, the coloring c is called a rainbow coloring of G. It
can be shown easily by exhaustion that any pair of vertices in G1 has a rainbow path between
them, which means G1 is rainbow connected. On the other hand, G2 is not rainbow connected
since any path between v1 and v4 contains two edges colored 1.

The minimum number of colors on a graph G which provides a rainbow coloring is called
the rainbow connection number rc(G) of G. A rainbow coloring on G using exactly rc(G)
colors is a minimum rainbow coloring of G.

A geodesic in G is any shortest path between two vertices u and v. Given a coloring
of a graph G, a rainbow u-v geodesic in G is a rainbow u − v path of length d(u, v) where
d(u, v) is the distance (path length) between u and v in G. A colored graph G is strongly rain-
bow connected if a rainbow u − v geodesic exists for any pair of vertices u, v in G, in which
case the coloring is a strong rainbow coloring. The minimum number of colors required for
a strong rainbow coloring is the strong rainbow connection number src(G).

2.1 Elementary Bounds

It should be clear that any graph which is strongly rainbow connected is also rainbow con-
nected, since any rainbow geodesic is a rainbow path. Thus any strong rainbow coloring is also
a rainbow coloring, though the converse does not always hold. Consider too that rc(G) and
src(G) are both defined for any connected graph G, for if m = |V (G)| we could simply use m
colors on G, one for each edge. Thus any paths in G, including geodesics, would be rainbow
paths. We can then say that rc(G) ≤ src(G) for any connected graph G.

The length of the longest geodesic in G (the longest shortest path) is the diameter of
G, denoted diam(G). Since diam(G) is the length of a geodesic between some pair of vertices in
V (G), diam(G) serves as a lower bound on both rainbow connection numbers. Since each edge
may only be assigned 1 color, a natural upper bound on the rainbow connection numbers rc(G)
and src(G) is |E(G)| = m. Then the following holds:

(1) diam(G) ≤ rc(G) ≤ src(G) ≤ m

We will reference the above inequality frequently throughout the paper.

2.2 The Petersen Graph

By way of example we find the rainbow connection numbers of the Petersen graph, which we
will call P . Observe that P1 demonstrates a rainbow 3-coloring on P , which means rc(P ) ≤ 3.
But rc(P ) ≥ 2, since there exist u, v ∈ V (P ) with d(u, v) 6= 1. Suppose rc(P ) = 2 to gain a
contradiction. It is known that the length of the shortest cycle in P is 5, which is odd. So there



must be two incident edges with the same color assigned. Call these e1 = uv and e2 = vw. The
path T = u, v, w is the only u−w path of length 2 (since a second distinct u−w path length 2
would create a 4 cycle in P , which contradicts the fact that P has no cycles of length less than
5). But e1 and e2 share a color, meaning T is not a rainbow path. Any other u − v path has
length 3 or greater and thus is not a rainbow path, since we assumed rc(P ) = 2. We conclude
a 2-coloring is impossible, meaning rc(P ) = 3.

We next consider src(P ). From (1), we know src(P ) ≥ rc(P ) = 3. Graph P2 from the
previous page demonstrates a strong rainbow 4-coloring of P , so src(P ) ≤ 4. The edge chro-
matic number of the Petersen graph is commonly known to be 4, indicating that there is no
3-coloring of the edges of P where incident edges always carry distinct colors. As we argued
above, though, having incident edges that share a color in the Petersen graph forces existence
of two vertices with no rainbow geodesic between them. So src(P ) 6= 3, leaving src(P ) = 4 as
the only possibility.

2.3 Extreme Cases

Proposition 1.1: Let G be a nontrivial connected graph of size m. Then:

(a) src(G) = 1 if and only if G is a complete graph,
(b) rc(G) = 2 if and only if src(G) = 2,
(c) rc(G) = m if and only if G is a tree.

Proof of (a): If G is a complete graph, then d(u, v) = 1 for any u, v ∈ V (G). Since an
edge is always a rainbow geodesic in G, we may use the coloring c(ei) = 1 for each ei ∈ E(G),
yielding that src(G) = 1. Note that if src(G) = 1, each geodesic in G must have length 1. So
G is a complete graph.

Proof of (b): Now suppose rc(G) = 2. Then src(G) ≥ 2 by (1). Since rc(G) = 2, then
for any nonadjacent u, v ∈ V (G), there must exist a rainbow u− v path length 2. Such a path
must be a geodesic, since u, v are not adjacent, so it is a rainbow geodesic.



Notice if u and v are adjacent, we again have a rainbow u− v geodesic. Thus src(G) = 2. For
the converse, assume src(G) = 2 and observe, by (1), that rc(G) ≤ 2. Consider that rc(G) = 1
would require that each rainbow path in G have length at most one. This only occurs in complete
graphs. However, if G were a complete graph we would have src(G) = 1, which contradicts our
operating assumption. We conclude, then, that rc(G) = 2.

Proof of (c): We use the contrapositive and suppose G is not a tree. This means there
is a cycle C = v1, v2, ...vk, v1. Use (m− 2) distinct colors for all edges of G except v1v2 and v2v3,
for which we use the same color. Refer to graph G1 for a small example.

This defines an (m− 1)-coloring on G. Any vi − v2 path in G need only include one among
edges v1v2 and v2v3, meaning it is a rainbow path. All other vi − vj paths need not include v2,
since it is part of a cycle. So rc(G) 6= m. Next, supposing G is a tree with m edges, consider
the fact that each vivj path in G is unique. See the graph of G2 for another small example. If
G could be rainbow colored with fewer than m colors, there would, by the Pigeonhole Principle,
be two edges es, et which share a color, say 2, without loss of generality. Since each path in G is
distinct, there is a vi− vj path including es, et. This contradicts that we had a rainbow coloring
on fewer than m colors. Thus rc(G) = m. �

3. Cycles and Wheels

We continue with a result regarding cycles. Recall that a cycle on n vertices, Cn, denotes a
sequence of vertices v1, v2, ...., vn, v1 where the vi are distinct if i 6= 1. In general, for cycles on n
vertices we will use the labeling ei = vivi+1 for 1 ≤ i ≤ (n− 1) and en = vnv1.

3.1 Connection Numbers on Cycles

Proposition 2.1:

For each integer n ≥ 4, rc(Cn) = src(Cn) = dn
2
e.



Proof: Label the vertices of Cn by v1, v2, ....vn.

Case n is even: Then n = 2k for some k ∈ Z. Define the coloring c0 by c0(ei) = i
for 1 ≤ i ≤ k and c0(ei) = i− k if k + 1 ≤ i ≤ n. This coloring ensures that c0(ei) = c0(ej) only
if i− k ≡ j (mod n). Thus edges with the same color have (k − 1) edges between them. So any
path length k or less will never repeat edges. Because diam(Cn) = k, each geodesic in Cn then
defines a rainbow path.

So c0 is a strong rainbow coloring, meaning rc(Cn) ≤ src(Cn) ≤ k = n
2

= dn
2
e. However,

using (1), we know n
2

= diam(Cn) ≤ rc(Cn) ≤ src(Cn). Therefore rc(Cn) = src(Cn) = dn
2
e

Case n is odd: Then n = 2k + 1 for some k ∈ Z, k ≥ 2. Define the coloring c1(ei) = i for
1 ≤ i ≤ k + 1 and c1(ei) = i− k − 1 if k + 2 ≤ i ≤ n.

From (1) we see that src(Cn) ≥ rc(Cn) ≥ diam(Cn) = k. We show first that c1 defines a
strong rainbow (k + 1) coloring on Cn, by which it is also a (k + 1) rainbow coloring. We finish
by proving that rc(Cn) 6= k, forcing rc(Cn) = src(Cn) = k + 1.

In a similar manner to the case where n is even, consider the case where c1(ei) = c1(ej). This
occurs either when i− (k + 1) ≡ j (mod n) or i + k ≡ j (mod n). So any edges in E(Cn) which
share a color have at least (k − 1) edges between them. Pick any vertices u, v ∈ V (Cn). Since
d(u, v) ≤ k we are guaranteed a rainbow u − v geodesic. Thus c1 is a strong rainbow coloring.

Now, assume by way of contradiction that rc(Cn) = k, calling this coloring c∗. Consider
two vertices u and v with d(u, v) = k. Then one u − v path is a geodesic, using all k colors
from c∗ and the other u− v path has length k + 1 and is not a rainbow path. Without loss let
c∗(vk+1vk+2) = k. Since paths P1 = v1, v2, ..., vk+1 and Q1 = v1, vn, vn−1, ..., vk+2 are both rain-
bow geodesics, they each cross an edge with color k. Notice that the paths P2 = v2, v3, ..., vk+2

and Q2 = vn, vn−1, ..., vk+1 are both rainbow geodesics. Because c∗(vk+1vk+2) = k, we are forced
to conclude that c∗(v1v2) = c∗(v1vn) = k. We arrive at a contradiction, since there is now no



v2 − vn path in Cn. Therefore rc(Cn) 6= k. Then rc(Cn) = src(Cn) = k + 1 = dn
2
e. �

3.2 Rainbow Connection Numbers of the Wheels

We earlier defined a family of graphs called the wheels, denoted Wn. To construct the
wheel Wn, begin with the cycle Cn and join each vertex in Cn to a new vertex v0. We follow
with some results on rainbow connection numbers of wheels.

Proposition 2.2: For n ≥ 3, the rainbow connection number of Wn is:

rc(Wn) =


1 if n = 3

2 if 4 ≤ n ≤ 6

3 if n ≥ 7

Proof: Since W3 = K4, it is immediate that rc(W3) = 1 (Prop 1.1). Now suppose 4 ≤ n ≤ 6.
Then rc(Wn) ≥ 2 since Wn is not complete for n > 3. Let c : E(Wn) → {1, 2} be defined as
follows:
• c(viv0) = 1 if i is odd and c(viv0) = 2 if i is even.
• c(vivi+1) = 1 if i is odd and c(vivi+1) = 2 if i is even

The colorings for 4 ≤ n ≤ 6 are shown next. As always, there is a rainbow path (an
edge) from the center vertex v to any vertex of the subgraph Cn, so we need only check that
there is a rainbow u− v path of length 2 between any pair of vertices in Cn to verify c is indeed
a rainbow 2-coloring.



Take u, v ∈ W4. Notice d(u, v) ≤ 2 and no incident edges in C4 share a color. Hence there is
a rainbow u−v path, meaning c is a rainbow 2-coloring on W4. If u, v are vertices in W5 we again
have a rainbow u− v path in C5 except in the case of vertices v2, v5. But v5, v0, v2 is a rainbow
v5 − v2 path, so c is a rainbow 2-coloring on W5. Finally suppose u, v ∈ W6. If d(u, v) ≤ 2
in C6 there is a rainbow u − v path, similar to W4. If d(u, v) = 3, then c(v0u) 6= c(v0v), since
u 6≡ v (mod 2). Thus u, v0, v is a rainbow u−v path as well, and c is a rainbow 2-coloring on W6.

If n ≥ 7, consider the coloring c : E(Wn)→ {1, 2, 3} defined by:

• c(viv0) = 1 if i is odd,
• c(viv0) = 2 if i is even,
• c(e) = 3 for each e ∈ E(Cn)

Take vi, vj ∈ Cn, where without loss j > i. If u, v are adjacent, then the edge vivj is a
rainbow path. Otherwise d(vi, vj) = 2. Since the spokes of the wheel alternate color, we have a
rainbow 2-path from vj to either vi or vi+1. If the first case, we are done. Otherwise vj, v0, vi+1, vi
is a rainbow vj − vi path of length 3. Thus rc(Wn) ≤ 3 if n ≥ 7. Since Wn is not the complete
graph for n > 3, we have that rc(Wn) ≥ 2.

Assume by way of contradiction that rc(Wn) = 2, so that a rainbow 2-coloring c0 exists.
Without loss of generality, say that c0(v1v0) = 1. Then for 4 ≤ i ≤ (n− 2), the only v1− vi path
of length 2 is v1, v0, vi. This means c0(v0vi) = 2 for 4 ≤ i ≤ (n − 2). There is only one v4 − vn
path of length 2, so c0(vnv0) = 1. Similarly, there is only one v3 − vn path of length 2, which
means c0(v3v0) = 2, forcing c0(vn−1v0) = 1. This in turn forces c0(v2v0) = 2. There is now no
rainbow v2 − v5 path of length 2 in Wn, contradicting our assumption of a rainbow 2-coloring.
We conclude that rc(Wn) = 3 if n ≥ 7, which completes the proof of Proposition 2.2. �

3.3 Strong Rainbow Connection Numbers of the Wheel

We continue with a result on the strong rainbow connection number of all wheels.

Proposition 2.3: For n ≥ 3, the strong rainbow connection number of of Wn is:

src(Wn) = dn
3
e



From Proposition 1.1 we see that src(W3) = 1. From Proposition 2.2, we have that
rc(Wn) = 2 for 4 ≤ n ≤ 6. Proposition 1.1 then yields that src(Wn) = 2 for 4 ≤ n ≤ 6.
So we safely assume that n ≥ 7. Then 3k − 2 ≤ n ≤ 3k for some k ∈ N. Note that it will be
sufficient to show that src(Wn) = k. We show first that src(Wn) ≥ k. Assume to the contrary
that there exists a (k − 1)-coloring c on Wn. The degree of a vertex v, denoted deg(v), in a
graph G is the number of vertices to which v is adjacent in G. Because deg(v0) = n > 3(k − 1),
there must exist some set S ⊂ V (Cn) with |S| = 4 and all edges in {v0u : u ∈ S} colored the
same (pigeonhole principle). Since n ≥ 7, there must exist u1, u2 ∈ S with d(u1, u2) ≥ 3 in Cn

and d(u1, u2) = 2 in Wn. So the only u1 − u2 geodesic in Wn is u1, v0, u2 This is not a rainbow
geodesic since c(u1v0) = c(u2v0). Hence a (k − 1)-coloring is not possible, and src(Wn) ≥ k.

Examples of strong rainbow k-colorings for W12 and W7

Now observe the strong rainbow k-coloring c : E(Wn)→ {1, 2, ..., k} defined by:

c(e) =


1 if e = vivi+1 and i is odd,

2 if e = vivi+1 and i is even,

j + 1 if e = viv0 for i ∈ {3j + 1, 3j + 2, 3j + 3} and 0 ≤ j ≤ k − 1

In the Cn subgraph, edges alternate with the one exception that c(vnv1) = c(v1v2) if n is
odd. The spokes of Wn are colored in groups of three, beginning with v1, and using colors 1 to
(k − 1). Take u, v ∈ Cn. If u and v are adjacent, the edge between them is a rainbow geodesic.
If d(u, v) = 2 in Cn and n is even, then there is a rainbow u−v geodesic in Cn. If n is odd, there
is a rainbow 2-path in Cn provided u and v are not the vertices vn and v2. In this special case,
notice that c(vnv0) 6= c(v2v0) and hence that {uv0v} is a rainbow geodesic in Wn. Now suppose
d(u, v) ≥ 3 in Cn. Then c(uv0) 6= c(vv0), which means {u, v0, v} is a rainbow u − v geodesic in
Wn. So c is a rainbow k-coloring, and src(Wn) ≤ k as desired. We showed src(Wn) ≥ k above,
which means src(Wn) = k = dn

3
e. �



4. Complete Multipartite Graphs

We move now to complete multipartite graphs, which we defined in Section 1.3. We be-
gin with the strong rainbow connection numbers of the complete bipartite graphs. Recall that a
complete bipartite graph can be partitioned into two independent sets S and T such that each
vertex s ∈ S is adjacent to every vertex t ∈ T .

4.1 Strong Rainbow Connection in Complete Multipartite Graphs

Theorem 2.4: For integers s and t with 1 ≤ s ≤ t,

src(Ks,t) = d s
√
te

Proof: For s = 1, K1,t is a tree with t edges (also the familiar star graph on t + 1 vertices).
From Proposition 2.1, then, we have that src(K1,t) = t = d 1

√
te. Thus Theorem 2.4 holds for

s = 1, so assume that s ≥ 2. Let d s
√
te = k. Then we have: k − 1 < s

√
t ≤ k.

⇒ (k − 1)s < t ≤ ks

⇒ (k − 1)s + 1 ≤ t ≤ ks (2)
As before, we first show src(Ks,t) ≥ k and then display a strong rainbow k-coloring of Ks,t to
show src(Ks,t) ≤ k. Assume by way of contradiction that src(Ks,t) < k. Then there is a strong
rainbow (k−1)-coloring of Ks,t. Call this coloring c and let U and W be the bipartitions of size s
and t respectively. Each vertex in W is adjacent to each of the s vertices in U . For w ∈ W , the s
colors assigned to edges connected to w form a natural s-tuple which we will call a color code for
w. For example, notationally we write code(wi) = (a1, a2, ..., as), where ai ∈ {1, 2, ...(k − 1)} for
1 ≤ i ≤ s. By the multiplication rule of counting, there are at most (k−1)s color codes possible.
Using the pigeonhole principle and inequality (2) above, there exist distinct wi, wj ∈ W such
that code(wi) = code(wj).



Now, a wi − wj geodesic in Ks,t is of the form wi, u, wj for some u ∈ U . But since wi, wj

have identical codes, c(wiu) = c(wju) for every u ∈ U . Thus there is no rainbow wi − wj

geodesic. So our assumption of a (k − 1) coloring is false, meaning that src(Ks,t) ≥ k.
To show that src(Ks,t) ≤ k, we construct a k-coloring on Ks,t. Let A = {1, 2, ..., k} and
B = {1, 2, ..., (k− 1)}, and let As and Bs denote the respective cartesian products of sets A and
B. We have |Bs| < t ≤ |As|. We label the first |Bs| elements of W as follows:

For 1 ≤ i ≤ |Bs|, let wi = (wi,1, wi,2, ..., wi,s) be any enumeration of all s-tuples in Bs,
where each wi,j represents a color, so that 1 ≤ wi,j ≤ k. These s-tuples are the color codes
assigned to the first |Bs| elements of W . From the remaining elements of As we arbitrarily
choose distinct s-tuples as labels wi, with |Bs| ≤ i ≤ t, for the unlabeled vertices of W . Now
use these labels to define the coloring c : E(Ks,t)→ {1, 2, ..., k} by:

c(wi, uj) = wi,j where 1 ≤ i ≤ t and 1 ≤ j ≤ s

Note that the labels now serve as color codes, where each color code is a distinct
s-tuple from As. Now we verify that c is indeed a strong rainbow k-coloring. Pick x, y ∈ Ks,t.
If x ∈ U and y ∈ W (or vice-versa), then the edge xy is a rainbow x − y geodesic. Next let
x, y ∈ W with x = wa, y = wb. Since each of the color codes for vertices in W are distinct,
then there exists u ∈ U such that the u-coordinate of code(wa) is different from the u-entry of
code(wb). For such a vertex u, we have the rainbow wa − wb geodesic wa, u, wb.

Finally, assume that x, y ∈ U , with x = ua, y = ub and (without loss) a < b. Recall that in
our labeling of the first |Bs| elements of W we used all possible s-tuples from Bs. This guarantees
that there exists some wi ∈ W such that wi,a 6= wi,b. So ua, wi, ub is a rainbow geodesic in Ks,t.
Therefore c is a strong rainbow k-coloring.
⇒ src(Ks,t) = k. �

We continue with strong rainbow connection numbers, but shift focus from complete bipar-



tite graphs to the more general complete multipartite graphs. It can be helpful to think of a
complete multipartite graph with t independent sets s1, s2, ...st as a copy of the complete graph
Kt where each vertex vi ∈ V (Kt) represents the independent set si.

Theorem 2.5: Let G = Kn1,n2,...,nk
be a complete k-partite graph, where k ≥ 3 and

n1 ≤ n2 ≤ .... ≤ nk. Further, let s =
∑k−1

i=1 ni and t = nk. Then:

src(G) =


1 if nk = 1,

2 if nk ≥ 2 and s > t,

d s
√
te if s ≤ t

Proof: Let n =
∑k

i=1 ni. If nk = 1, then ni = 1 is forced for 1 ≤ i ≤ k. But this describes
the complete graph Kk. From Proposition 1, we have then that src(G) = 1. Next consider the
case nk ≥ 2 and s > t. Since there exists a nontrivial independent set, G 6= Kk, which means
src(G) ≥ 2. It will be sufficient to show a rainbow 2-coloring to prove that src(G) ≤ 2. We
partition S = {n1, n2, ..., nk} into 2 multisets:

A = {a1, a2, ..., ap} and B = {b1, b2, ..., bq}

with the restrictions that:

1) p + q = k
2) a =

∑p
i=1 ai ≤

∑q
j=1 bj

3) b− a is minimized with b− a ≥ 0

From this point forward, when illustrating complete multipartite graphs, we use the idea
of a complete graph where each vertex represents all vertices of an independent set from G. An
edge in Kk between ni and nj represents an edge from each vertex of ni to each vertex of nj.
The following example demonstrates an example for G = K1,1,2,4,4. The gathering of indepen-
dent sets to minimize (b − a) need not be distinct; for instance n1, n2 below could be swapped
out with n3, with no harm done.



It is plain to see that K6,6, the complete bipartite graph with independent sets A and B
shown previously is a spanning subgraph for G = K1,1,2,4,4, as indicated below.

In the general case, with G = Kn1,n2,...,nk
, we have that Ka,b is a spanning subgraph for G.

Consider that G has each of the edges in Ka,b and possibly more. Since diam(Ka,b) = 2, then
for any nonadjacent vertices u and v in G, a u− v path is a geodesic in G if and only if it is a
geodesic in Ka,b. From this and Theorem 2.4, we have:

src(G) ≤ src(Ka,b) ≤ d a
√
be

We return to the proof of Theorem 2.5. We have s =
∑k−1

i=1 ni and t = nk from the previous
page, and are pursuing the case that nk ≥ 2 and s > t. Notice s > t yields that q ≥ 2 since
b− a > 0. It was already shown that src(G) ≥ 2 when nk ≥ 2, so from the inequality above, it
is sufficient to show that b ≤ 2a.

Assume to the contrary, that b > 2a. Order the elements of B such that b1 ≤ b2 ≤ ... ≤ bq.
Claim 1: bi ≤ a for each i. Suppose not, to force a contradiction. Then bq > a. Since s > t,
the selections A∗ = {bq}, B∗ = A ∪ B − {bq} for A and B yield a lower nonnegative value for
b− a, which means sets A and B were not valid, a contradiction. Thus bi ≤ a for 1 ≤ i ≤ q.
Claim 2: b < 3a. Again, assume this is false to force a contradiction. Then b ≥ 3a. Since
b1 ≤ a, we have the following: a + b1 ≤ 2a = 3a− a ≤ b− a ≤ b− b1.
Observe that since a + b1 ≤ b − b1, we could have included b1 in set A, meaning again that
choices for sets A and B were invalid, a contradiction. Then b < 3a.

Using these two results, we see that 2a < b < 3a. The only pair of integers satisfying this
inequality is (2, 5) In this case, since bi ≤ 2 we are forced to conclude that b1 = 1. So b1 could
have been included in set A, meaning (2, 5) is not a valid pair. So we have no integers satisfying
2a < b < 3a. Our working assumption that b > 2a is clearly false, leading to our desired result
that b ≤ 2a. Therefore src(G) ≤ d a

√
be ≤ d a

√
2ae = 2



We conclude Theorem 2.5 by showing that if s ≤ t, src(G) = d s
√
te. Let W be the unique

independent set nk. As before, Ks,t is a spanning subgraph of G and src(G) ≤ src(Ks,t) = d s
√
te.

The claim is that src(G) = d s
√
te. Once more we suppose not by means of a contradiction. So

then src(G) = ` < d s
√
te, producing t > `s. Obviously there exists a strong rainbow `-coloring c

of the graph G. Returning to the idea of color codes from previous work, and since deg(w) = s
for each of the t vertices in W , we can have at most `s dinstinct s-tuples for color codes in W .
This means there are 2 vertices wa, wb such that code(wa) = code(wb). Then there is no wa−wb

geodesic in G, contradicting the claim of a strong rainbow `-coloring for G.
⇒ src(G) = d s

√
te �

4.2 Rainbow Connection in Complete Multipartite Graphs

Notice we have actually shown results on strong rainbow colorings first for complete multi-
partite graphs. Results on rainbow colorings are next, and whereas strong rainbow connection
numbers increased with the size of the graphs in Theorems 2.4 and 2.5, results regarding rainbow
connection numbers in multipartite graphs are bounded. We continue, first with an upper bound
on the rainbow connection number of complete bipartite graphs.

Theorem 2.6: For integers s and t with 2 ≤ s ≤ t,

rc(Ks,t) = min{d s
√
te, 4}

Proof: We first show that that for d s
√
te < 4, rc(Ks,t) = d s

√
te. We then display a rainbow

4-coloring of Ks,t for d s
√
te ≥ 4. By assumption s ≥ 2, which means d s

√
te ≥ 2. So we consider

cases for d s
√
te = 2 and d s

√
te = 3. We will let U and W be the bipartite sets of Ks,t with

U = {u1, u2, ..., us} and W = {w1, w2, ..., wt}

Case d s
√
te = 2 : Since s

√
t ≤ 2 and by assumption s ≤ t, we have s ≤ t ≤ 2s. From

Theorem 2.4, src(Ks,t) = d s
√
te, so Proposition 1.1 forces

diam(Ks,t) = 2 ≤ rc(Ks,t) ≤ src(Ks,t) = d s
√
te = 2.

Thus rc(Ks,t) = 2.

Case d s
√
te = 3: Then 2s + 1 ≤ t ≤ 3s. From Proposition 1.1 and Theorem 2.4, we have

diam(Ks,t) = 2 ≤ rc(Ks,t) ≤ src(Ks,t) = d s
√
te = 3

which mean rc(Ks,t) ∈ {2, 3}. Suppose by way of contradiction there is a rainbow 2-coloring of
Ks,t. As in prior proofs, for w ∈ W , let code(w) be the s-tuple which defines a color code for
the s edges between w and U . Since t > 2s, the pigeonhole principle assures us that there are
two vertices wa, wb ∈ W such code(wa) = code(wb). Thus there is no rainbow wa − wb path of
length 2 in Ks,t, so that rc(Ks,t) = 3 is forced.



Case d s
√
te ≥ 4: In this case t ≥ 3s + 1. We need to prove that rc(Ks,t) = 4 Again using

a contradictive proof, assume c is a rainbow 3-coloring of Ks,t, in order to show rc(Ks,t) ≥ 4.
We turn to the pigeonhole principle once again, to see that since t > 3s, there exist wa, wb with
code(wa) = code(wb). Now, the only wa − wb paths in Ks,t are of even length. Since c is a
3-coloring, any wa − wb path has length 2. But since code(wa) = code(wb), we have no rainbow
wa − wb paths length 2. We conclude there are no rainbow 3-colorings, meaning rc(Ks,t) ≥ 4.

Lastly, we provide a rainbow 4-coloring of Ks,t. Let A = {1, 2, 3}, W = {w1, w2, ..., wt},
W ′ = {w1, w2, ..., w3s}, and W ′′ = W − W ′. Match up the 3s distinct elements of As to the
vertices of W ′. For the color codes of vertices of W ′′, assign a 4 to the first digit and a 3 to
all remaining digits. That is, for w ∈ W ′′, code(w) = (4, 3, ..., 3). For the coloring c we define
c(wiuj) = k if the jth coordinate of code(wi) is k. Below is an example of how the coloring of
edges from just one vertex in U might appear.

Now suppose x and y are arbitrary vertices of Ks,t.

Case 1: x, y ∈ W ′. Then code(x) 6= code(y), which means there is some i, with 1 ≤ i ≤ s
such that the ith coordinates of code(x) and code(y) differ, so that x, ui, y is a rainbow path of
length 2 in Ks,t.

Case 2: x ∈ W ′ and y ∈ W ′′. The first coordinate of code(x) is 1, 2, or 3 and the first
coordinate of y is 4. Thus x, u1, y is a rainbow path of length 2.

Case 3: x, y ∈ W ′′. There are s-tuples in the set As with first and second coordinates 1
and 2 respectively. Thus there exists wi in W ′ such that the first coordinate of code(wi) is 1 and
the first coordinate of code(wi) is 2. Then x, u1, wi, u2, y is a rainbow path with colors 4, 1, 2, 3
respectively.

Case 4: x, y ∈ U . We write x = ui, y = uj where 1 ≤ i ≤ j ≤ s. As before, there is
some wi ∈ W ′ such that the ith and jth coordinates of wi differ, which means x,wi, y is a
rainbow path in Ks,t.

So c is a rainbow 4-coloring of Ks,t, and rc(G) = 4 as claimed. �



We now generalize to the rainbow connection numbers of all complete multipartite graphs.

Theorem 2.7: Let G = Kn1,n2,...,nk
be a complete k-partite graph, where k ≥ 3 and

n1 ≤ n2 ≤ ... ≤ nk. Further, let s =
∑k−1

i=1 ni and t = nk. Then:

rc(G) =


1 if nk = 1

2 if nk ≥ 2 and s > t

min{d s
√
te, 3} if s ≤ t

Proof: Let n = s + t =
∑k

i=1 ni. If nk = 1, then ni = 1 for 1 ≤ i ≤ k − 1. We have

directly from Proposition 1.1 that rc(G) = 1. So assume nk ≥ 2 and that s > t. By Theorem
2.5, src(G) = 2, which means, using Proposition 1.1 again, that rc(G) = 2. Finally we consider
the case that nk ≥ 2 and s ≥ t.

A complete graph has only independent sets of size 1, which means G 6= Kn. By Theorem
2.5, src(G) = d s

√
te, so that rc(G) ≤ d s

√
te. We now show that rc(G) ≤ 3 by providing a rainbow

3-coloring of G. Label the k partite sets of G by V1, V2, ...., Vk where

Vi = {vi,1, vi,2, ..., vi,ni
} for 1 ≤ i ≤ k.

Further, let

U = V1 ∪ V2 ∪ ... ∪ Vk−1 = {u1, u2, ..., us}.

such that vi,j = uti+j where ti =
∑i−1

j=1 nj for 1 ≤ i ≤ k − 1. Observe that |U | = s. Now we
define a coloring c on G by:

c(e) =


1 if e = vi,jvi+1,j for 1 ≤ i ≤ k − 2 and 1 ≤ j ≤ ni, or

if e = u`vk,` for 1 ≤ ` ≤ s,

2 if e = v1,jvk,` for 1 ≤ j ≤ n1 and s + 1 ≤ ` ≤ t,

3 otherwise

We will first present a visual aid, followed by the proof that c : E(G) → {1, 2, 3} is in-
deed a rainbow 3-coloring of G. We continue with the illustrative technique used previously. We
construct the complete graph Kk where each vertex represents a partite set ni from G. Recall
that an edge between nodes ni, nj in the new complete graph reflects an edge between each
vertex of ni with each vertex of nj.



Let x, y ∈ V (G). If x and y are adjacent we are done, so suppose x and y are 2 nonad-
jacent vertices of G. Then x, y ∈ Vi for some i with 1 ≤ i ≤ k. Label x = vi,p and y = vi,q
where, without loss, 1 ≤ p < q ≤ ni. Take first the case where 1 ≤ i ≤ k − 1. Since p 6= q,
c(xvi+1) 6= c(y, vi+1), which means x, vi+1, y is a rainbow path. If instead i = k, we have 3 cases.

Case 1 ≤ p < q ≤ s: On observation, {x, up, y} is a rainbow path colored 1 and 3.

Case s + 1 ≤ p < q ≤ t: Then x, v1,1, v2,1, y is a rainbow path colored 2, 1 and 3.

Case 1 ≤ p ≤ s < q ≤ t: Here we have that x, v1,1, y is a rainbow path with edges col-
ored 3 and 2 respectively.

In all cases, there exists a rainbow x − y path. So rc(G) ≤ 3. To show rc(G) ≥ 3, sup-
pose to the contrary that rc(g) = 2 and let c′ be a strong rainbow 2-coloring, guaranteed by
Proposition 1.1). Consider the color codes which can be assigned to each vertex w ∈ W , where
ai = c(uiw) ∈ {1, 2} for 1 ≤ i ≤ s. We once again invoke the pigeonhole principle, using the fact
that t > 2s, to see there exist wa, wb ∈ W such that code(wa) = code(wb). The colors, then, of
any length 2 wa − wb path in G are identical. So there is no rainbow wa − wb geodesic. By this
contradiction we conclude that rc(G) ≥ 3, forcing that rc(G) = 3. This concludes the proof of
Theorem 2.7. �



4.3 Additional Results

We summarize a few results. Having seen that rc(G) ≤ src(G) for each nontrivial con-
nected graph G, then by Proposition 1.1, we have that for every positive integer a and every
tree T with a edges, rc(T ) = src(T ) = a. Further, if a ∈ {1, 2}, rc(G) = a if and only if
src(G) = a. If a = 3 and b ≥ 4, then by Propositions 2.2 and 2.3, rc(W3b) = 3 and src(W3b) = b.

So then, we next assume that a ≥ 4 and gain the following result:

Theorem 3.1: Let a and b be integers with a ≥ 4 and b ≥ (5a − 6)/3. Then there ex-
ists a connected graph G such that rc(G) = a and src(G) = b.

Proof: Let n = 3b − 3a + 6 and Wn be the wheel constructed from Cn with a new vertex
v0, adjacent to each vertex in Cn. As usual, Cn = v1, v2, ..., vn, v1 where vi 6= vj for 2 ≤ i ≤ n.
Now let G be the graph constructed from Wn and the path Pn−1 = u1, u2, ..., ua−1 such that
ua−1 = v0.

We will first show that rc(G) = a. For a ≥ 4, we have b ≥ (5a − 6)/3 > (5a − 2a)/3 = a.
Then we may conclude that b− a ≥ 1, yielding n = 3b− 3a + 6 ≥ 1 + 6 = 7. Thus rc(Wn) = 3,
by Proposition 2.2. Next, define a coloring c : E(G)→ {1, 2, ...a} by:

c(e) =


i if e = uiui+1 for 1 ≤ i ≤ a− 2

a if e = viv0 and i is odd ,

a− 1 if e = viv0 and i is even ,

1 otherwise

To show c is a rainbow a-coloring, let x, y ∈ G and consider by cases.



Case x, y ∈ Pa−1: Since each edge in Pa−1 has a distinct color, there is a rainbow x− y path.

Case x, y ∈ Wn: Write x = vi and y = vj. Without loss, say i < j. If c(viv0) 6= c(vjv0) then
vi, v0, vj is a rainbow x− y path of length 2. Otherwise vi, vi+1, v0, vj is a rainbow x− y path of
length 3. (The edges of Wn alternate and we ruled out i = n, j = 1)

Case x ∈ Pa−1, y ∈ Wn: Write x = ui and y = vj. Observe that ui, ui+1, ..., v0 is a rain-
bow x − v0 path. Since none of the spokes of the wheel Wn share a color with Pa−1, we have
that P = ui, ui+1, ..., v0, vj is a rainbow x − y path in G. Thus c is a rainbow a-coloring of G,
meaning rc(G) ≤ a.

To show rc(G) = a we show that there is no (a − 1) rainbow coloring of G. Assume to
the contrary, that c∗ is a rainbow (a − 1) coloring of G. We can assume without loss that
c∗(uiui+1) = i for 1 ≤ i ≤ a− 2, since each edge in Pa−1 must have distinct colors. Clearly the
path u1, u2, ..., v0 uses (a− 1) colors. Since any u1− vi path is distinct for 1 ≤ i ≤ n, there is no
choice but that c(viv0) = a− 1 for 1 ≤ i ≤ n.

Observe that n = 3b− 3a+ 6 ≥ 3
(
5a−6
3

)
− 3a+ 6 = 5a− 6− 3a+ 6 = 2a. Since n ≥ 2a, any

v1− va+1 path has length a or greater. Thus any v1− va+1 path has 2 edges which share a color,
meaning there is no rainbow v1 − va+1 path in G. Apparently there does not exist an (a − 1)
coloring of G, which concludes the proof that rc(G) = a.

We again refer to the illustration of graph G on the previous page as we move to the proof
that src(G) = b. First consider that dn

3
e = n

3
= a− b + 2. By Theorem 2.3, then, with Wn as a

subgraph of G and n ≥ 7, src(Wn) = a− b + 2. Let c1 be a strong rainbow (b− a + 2) coloring
of Wn. Define the coloring c on G by

c(e) =

{
c1(e) if e ∈ E(Wn)

b− a + 2 + i if e = uiui+1 for 1 ≤ i ≤ a− 2

By assumption, c1 is already a strong rainbow (b − a + 2) coloring on Wn. Moreover, since
the edges of Pa−1 and Wn share no colors, all ui − vj geodesics are rainbow geodesics. Lastly,
noting that there are (a− 2) colors used on the edges of Pa−1 and (b− a+ 2) colors used on the
edges of Wn, we see that c is in fact a strong rainbow b-coloring of G.

Having satisfied src(G) ≤ b we show that src(G) ≥ b by again supposing for the purpose of a
contradiction that there is a strong rainbow (b−1) coloring on G. Let c∗ be such a coloring, and
assume without loss that c∗(uiui+1) = i for 1 ≤ i ≤ a− 2. Further, let C = {a− 1, a, ..., b− 1}
and S = {v0vj : 1 ≤ j ≤ 3b−3a+6}. Note that |C| = b−a+1 and |S| = 3b−3a+6. Returning
to the idea that ui − vj geodesics are distinct, it must be that c∗(v0vj) ∈ C. It was shown
previously that no more than 3 edges of the wheel can share a color without losing a strong
rainbow coloring. Hence the (b− a+ 1) colors of C can color at most 3(b− a+ 1) = 3b− 3a+ 3
edges. Since we have n = 3b − 3a + 6 edges to color in |S|, we cannot have a strong rainbow
(b− 1) coloring. Therefore, src(G) = b as desired. �
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